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Observation of bistability in a perturbed magneto-optical trap
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Abstract. We report on the experimental observation of bistability in a magneto-optical trap perturbed by
a focalized laser beam. This bistability is theoretically interpreted by studing the atomic losses induced by
the perturbing beam. Comparison with a Monte Carlo model allows us to deduce the trap capture velocity
along the perturbing beam.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical
chaos and complexity and optical spatio-temporal dynamics

1 Introduction

The dynamics of the magneto-optical trap (MOT) is a
subject of great interest. The very first experiments of
atom trapping in a MOT have shown much lower tempera-
tures and much larger cloud sizes than expected on the ba-
sis of simple theories. The first theoretical efforts were then
concentrated in understanding why the equilibrium tem-
perature was so low (of the order of a few microkelvins),
and lead to the polarization-dependent mechanisms of the
Sisyphus effect or the alignment effect [1]. Two kinds of
collective effects have also been identified [2,3]. The first
one is the so-called “shadow effect”: due to the optical
thickness of the atomic cloud, different atoms inside the
cloud see different beam intensities, and this generates a
force pushing the atoms one against the other, contribut-
ing thus to reduce the size of the cloud. In the usual MOT
configuration using three retro-reflected beams, this effect
also shifts the center of mass of the atomic cloud with re-
spect to the center of the trap, that is, the zero-magnetic
field point. As we will see, this displacement plays an es-
sential role in the phenomenon studied in the present pa-
per. The second collective effect is called “multiple scat-
tering”, and arises from the fact that an atom inside the
cloud can scatter a photon emitted by another atom of
the cloud. This effect can be modelized as an effective re-
pulsive coulombian interaction among the atoms and thus
contributes to increase the size of the atomic cloud. In
fact, the abnormally large cloud size has been attributed
to this effect.
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Aside the collective effects discussed above, unusual
spatial cloud structures have been observed, in the case of
misaligned traps, and theoretical explanations based on
the generation of vortex forces by the beam misalignment
have been proposed [4,5].

Many works have been devoted to the dynamics of
the atomic cloud captured in a vapor-cell MOT [6–8], and
to MOTs with only one atom [9]. There have been rel-
atively few experimental results concerning properties of
the MOT as essential as its capture velocity, i.e. the max-
imum velocity allowed for an atom to be trapped into the
MOT. In particular, the evident anisotropy of the MOT
was never studied to our knowledge.

In this paper, we voluntarily perturbed a cloud of cold
atoms with a highly focalized laser beam, the perturbing
beam (PB), and we show that, under certain conditions,
the measurement of the population of the cloud as the
intensity of this beam is swept reveals a bistability phe-
nomenon. The study of one of the transition points in the
bistability cycle allows us to deduce the trap capture ve-
locity along the PB.

The paper is organized as follows: In Section 2 we
briefly describe the experimental set-up and present mea-
surements of the bistability cycle and in particular of the
dependence of one of the turning points on the detuning
of the perturbing beam. We measure an important effect:
the displacement of the center of mass of the atomic cloud
as a function of its population, and we interpret this effect
as due to the shadow effect. In Section 3 we introduce a
simple model that clearly puts into evidence the physi-
cal mechanism leading to the bistability, although it does
not allow a quantitative description of the phenomenon.
A quantitative approach, introduced in Section 4, is a nu-
merical Monte-Carlo model that describes the interaction
of the perturbing beam with the cold atoms. This model
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allows us to deduce the trap capture velocity along the
perturbing beam. Finally, Section 5 concludes our work.

2 Experimental set-up and results

We work with the cesium D2 line (λ = 852 nm). The MOT
is formed by three mutually orthogonal retro-reflected
laser beams with orthogonal circular polarization, whose
intensity IT can be chosen between zero and four times the
saturation intensity for the cesium (IS = 2.2 mW/cm2).
The trapping is obtained by applying a magnetic field gra-
dient of 14 G/cm. The MOT detuning δT can be varied
from 0 to −6Γ (Γ = 2π × 5.3 MHz is the natural width
of the transition). The maximum population of the trap
is N = 2× 108 atoms, in a volume of about 1 mm3. The
trapping diode laser is injected by a master diode laser,
which is locked on the saturated absorption profile of the
cesium line. The master diode is also used to inject the
additional laser diode that supplies the independent beam
used to perturb the trap, the perturbing beam (PB). This
beam is coplanar with two arms of the magneto-optical
trap (Fig. 1). Let us define spatial axes (x, y, z) along the
arms of the trap, with z being the vertical axis and the
origin coinciding with the zero magnetic-field point, that
we shall call the center of the trap. The PB defines an-
other spatial frame (x′, y′, z). We choose the x′ axis along
the PB, making an angle θ with the x axis of the trap,
whereas the transverse direction with respect to the PB
defines the y′ axis. The vertical axes are the same in both
frames. The PB is focalized to a waist of 10 µm at the
zero-magnetic field point, and its typical power is a few
mW, which gives Rabi frequencies as high as 1000Γ . An
acousto-optical modulator allows us to sweep the detun-
ing δP of the PB with respect to resonance. The atomic
cloud is imaged onto two CCD cameras, one in a direction
close to the axis of the PB and the other orthogonally to
this axis, along the y′ axis. The population is monitored
by focalizing the fluorescence light of the trap collected
over a solid angle of 0.2 sr onto a photodiode.

A crucial role in the bistability phenomenon is played
by the coupling between the population and the displace-
ment (due to the shadow effect) of the center-of-mass
(CM) of the atomic cloud with respect to the center of
the trap. This coupling originates in the fact that each
arm of the trap is formed by a retro-reflected laser beam:
the “on-going” beam is absorbed by the atoms into the
cloud, then retro-reflected before passing again inside the
cloud. The back-reflected beam is thus always weaker than
the on-going beam, creating an imbalance in the radiation
pressure seen by a given atom into the cloud. The conse-
quence is a net force pushing the atoms of the cloud in
the direction of the retro-reflection mirror until the ef-
fect of the restoring force generated by the magnetic-field
gradient equilibrates the radiation pressures. In three di-
mensions, the CM of the atomic cloud is displaced along
the bisector of the tri-orthogonal trap arms. One easily
understands that this displacement is proportional to the
optical thickness of the cloud, and one expects it to in-
crease with the cloud population, which can be verified
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Fig. 1. Experimental set-up. The PB is contained in the plane
formed by the x and y-axes of the MOT, and makes an angle
θ with the x-axis. The z-axis is perpendicular to the plane of
the figure.
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Fig. 2. Experimental measurement of the position of the
center-of-mass of the atomic cloud as a function of the pop-
ulation, in the absence of the perturbing beam. There is an
almost linear relation between the two quantities. The param-
eters of the trap are δT = −1.5Γ , IT = 3Is. The mean slope
is 0.5 mm/108 atoms, corresponding to a = 2.05, where a is a
parameter defined in equation (16).

experimentally. A maximum displacement is observed for
a detuning of the trap around −2.5Γ .

We experimentally studied the dependence of the CM
position on the trap population in the absence of the PB.
This is done by imaging the atomic cloud over a “four-
quadrants” photodiode. The result is shown in Figure 2,
revealing an almost linear relation between the CM posi-
tion and the population. This result will be useful in the
following of the paper.

We show in Figure 3 a typical bistability cycle ob-
served in our experiment by monitoring the fluorescence
of the cloud as a function of the perturbing beam intensity
IP . We start from a low intensity PB, and consequently
from a highly-populated trap, corresponding to the upper
branch of the bistability cycle. The atomic cloud is then
displaced with respect to the center of the trap, and thus
with respect to the PB. As a consequence, the PB inter-
acts essentially with the periphery of the atomic cloud (see
Fig. 4a), and has a limited efficiency in expelling atoms
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Fig. 3. Experimentally observed bistability cycle obtained by
sweeping the intensity of the perturbing beam and simultane-
ously recording the atomic cloud fluorescence. Parameters are
δT = −1.5Γ, IT = 4Is, δP = −3.9Γ .
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Fig. 4. CCD camera images of the atomic cloud in the plane
orthogonal to the perturbing beam. (a) Trap in the high-
population state. (b) Trap in the low-population state. The
crosses show the location of the trap center.

from the cloud. When the intensity of the PB reaches a
transition value I↓, we observe a strong decreasing of the
fluorescence, corresponding to the transition to the lower
branch of the cycle. Then one sees, in the plane orthog-
onal to the PB, a ring-shaped atomic cloud, with a hole
at the center (Fig. 4b). At the same time, in the plane
parallel to the PB, a jet of atoms pushed out of the cloud
appears (Fig. 5), showing that important losses are now
induced by the PB. An important point to be noted is
that the CM of the atomic cloud now coincides with the
PB. This fact is not surprising: as the system is now in its
low population branch, its optical thickness is low, and so
is the shadow effect. At the same time, this also explains
the increased efficiency of the PB in expelling atoms from
the cloud: it crosses the center of the atomic cloud rather
than its periphery, as it occurred when the system was in
the upper branch.

As the intensity of the perturbing beam is decreased
from its maximum value, we observe a decreasing of the
diameter of the hole at the center of the cloud, together
with a progressive disappearance of the atomic jet along
the perturbing beam. Finally a transition from the lower
to the upper branch of the cycle occurs, but at an intensity
I↑ lower than I↓, giving rise to the characteristic shape of
a bistability cycle. We experimentally verified that there

x'

z

Fig. 5. CCD camera image of the trap in its low-population
state in a plane parallel to the perturbing beam, showing the
jet of atoms expelled from the trap.
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Fig. 6. Perturbing beam intensity I↓ corresponding to the up-
down transition point as a function of the detuning of the PB.
For both graphs the parameters of the trap are IT = 4Γ , δT =
−1.5Γ . (a) θ = 23◦, (b) θ = 35◦. The solid curves correspond
to the numerical fit described in Section 4. The fits give the
following values: (a) vc(23◦) = 49 m/s and Dth(23◦) = 0.255.
(b) vc(35◦) = 12 m/s and Dth(35◦) = 0.254.

is no bistability if the PB is displaced far enough from the
center of the trap.

We performed a study of the transition point I↓ as
a function of the detuning δP of the perturbing beam,
for two values of the angle θ. The result is presented in
Figure 6. We found that the transition intensity is lower if
this angle approaches 45◦, which is not surprising as the
trap confinement is weaker along the bisectors of the trap
beams. We choose to study the up-low rather than the
low-up because it corresponds to a initial cloud shape not
too different from an unperturbed MOT. It is relatively
homogenous and easier to modelize. As we will see in Sec-
tion 4, a numerical model describing the interaction of the
trapped atoms with the PB allows us to deduce the trap
capture velocity along the perturbing beam.
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In the next section we will introduce a theoretical
model that can explain the bistability and gives a sim-
ple physical interpretation of this phenomenon.

3 Theoretical model

In this section we develop a simple theoretical model to
put into light the physical origin of the bistability phe-
nomenon. This model is not intended to describe in detail
the interaction of the perturbing beam with the trapped
atoms, but to show how bistability arises from the losses
induced by the PB and from the dependence of the CM
position on the population of the atomic cloud.

Our one-dimensional model is based on the following
assumptions:

1. The population N of the trap is governed by a “feed-
loss” equation:

dN

dt
= R− bN (1)

where R is the feed term and b is the total loss coeffi-
cient. This form has been widely used in the literature
to describe the global population evolution in MOTs
(see, e.g. [6]).

2. The perturbing beam removes atoms from the trap,
increasing the losses. The equilibrium population Ns
of the trap is determined by the equilibrium between
the feed term and the losses. The loss term includes
both the losses induced by the PB, bP (IP , δP ), and
the normal losses of the trap in the absence of the PB,
b0:

Ns =
R

b
=

R

b0 + bP
· (2)

3. The efficiency of the PB in inducing losses depends
on the effective number of atoms interacting with it.
As the PB is focalized into the trap to a waist that
is about a hundred times smaller than the size of the
atomic cloud, this effective number clearly depends on
the alignment of the PB with respect to the atomic
cloud.

Let us suppose that the atomic cloud of total popula-
tion N obeys a gaussian distribution centered at x0:

N(x) =
N
√
πσ

exp[−(x− x0)2/σ2] . (3)

The transition rate for an atom at the position x inside
the cloud to absorb a photon from the perturbing beam1

of waist w0 is given by:

S(X) =
Γ

2

I exp
[
−2X2/W 2

0

]
∆2 + 1/4 + I exp [−2X2/W 2

0 ]
(4)

1 As the PB intensity is much higher than the intensity of
the trap beams, we neglect the effect of the trapping beams in
this calculation.

where we introduced the normalized variables:

I = IP /IS (5)

X = x/σ (6)

∆ = δP /Γ (7)

W0 = w0/σ . (8)

The total transition rate is thus given by:

S =
N
√

8π
Γ W0 e

−X2
0F (Z) (9)

where

F (Z) = Z eX
2
0

+∞∫
−∞

dy exp

−W 2
0

2

(
y −

√
2X0

W0

)2


×
e−y

2

1 + Ze−y
2 (10)

and

Z ≡
I

∆2 + 1/4
· (11)

Consider now the two terms under the integral sign. The
first one is a displaced gaussian whose width is of the order
of W−1

0 ≈ 100, whereas the second is concentrated around
y = 0. Thus:

F (Z) ≈ Z

+∞∫
−∞

dy
e−y

2

1 + Ze−y
2 · (12)

We now write the loss term in equation (1) as

bN = b0N +

√
8π

Γ
αS =

[
b0 + αW0 e

−X2
0 F (Z)

]
N (13)

where α is an unknown constant and the factor
√

8π/Γ is
introduced for later convenience. Let us define the scaled
population variable n = N/N0, with N0 = R/b0 being
the unperturbed population of the trap and a scaled time
τ = b0t. The equation of motion of the trap population
(1) is then:

dn

dτ
= 1−

[
1 + αW0 e

−X2
0 F (Z)

]
n (14)

and its stationary solution can be formally written as

n =
1

1 + αW0 e−X
2
0 F (Z)

· (15)

If X0 does not depend on the population of the trap, this
equation gives the exact stationary solution for the trap
population, which depends on the parameters of the PB
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Fig. 7. The function F (Z).

only through W0 and Z. As Z is proportional to the in-
tensity of the PB, it will give rise to a simple dependence
of the population on the intensity of the beam, a curve
starting from 1 as I = 0 and decreasing roughly with 1/I,
showing no bistability. However, a key feature of the sys-
tem is the fact that position of the atomic cloud depends
linearly on the population of the trap:

X0 = an. (16)

We can now invert equation (15) and obtain:

βF (Z) =
1− n

n
exp(a2n2) ≡ G(n) (17)

with β ≡ αΓW0. A graphical representation of each side
of this equation shows how bistability arises from the de-
pendence of the position of the CM on the population of
the cloud. In Figure 7 we plotted the function F (Z) and
in Figure 8 the function G(n) for different values of the
parameter a. A simple analysis then shows that the con-
dition on the nonlinearity control parameter a to observe
the bistability is:

a > (27/8)1/2 ' 1.84 (18)

in which case G(n) presents a maximum Gmax and a mini-
mum Gmin. If this condition is satisfied, bistability should
always arise: for a given value of β, it will show-up for some
interval of Z values, Z↑ < Z < Z↓, with the transition
points satisfying βF (Z↑) = Gmin and βF (Z↓) = Gmax.

Plotting the stationary value of n as a function of Z,
one finds the usual structure of bistability, presenting two
stable branches connected by an instable branch. Figure 9
shows a typical bistability cycle obtained from the above
model.

In usual units, the relationship between the CM po-
sition and the population is x0 = σaN/N0, which means
that for a fully populated trap, the CM position is x0 =
ar1/2/

√
ln 2, where r1/2 is the HWHM of the cloud. Ex-

perimentally, a precise measurement of the radius of a
highly populated cloud is difficult because of its asym-
metrical form (Fig. 4), but we observed that it is displaced
with respect to the center of the trap of distance of the
order of its diameter (1 mm); a ' 2 is thus a typical
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Fig. 8. The function G(n) for different values of the parameter
a. The general shape of the function changes for a = 1.84. For
a greater than this threshold value, the function presents two
local extrema, leading to the bistability. The values of a are
(a) 0; (b) 1.84; (c) 2.0; (d) 2.2.

0.0

0.2

0.4

n

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8
Z / 106

1.0 1.2 1.4 1.6 1.8 2.0

Fig. 9. Cycle of bistability obtained from the model devel-
opped above. The values of the parameters are a = 1.916 and
α = 0.35.

value (see Fig. 2). On the other hand, equation (13) al-
lows us to write at the up-down turning point of the cycle,

b↓ = b0 + bP = 1 + αW0 e
−X2

0 F (Z↓), which implies

b↓/b0 = 0.3 (19)

for the parameters of Figure 9. The fact that the transition
points of the bistability cycle correspond to a threshold
value for the losses term will be used in the numerical
model introduced in the next section.

In conclusion, we stress that the theoretical model pre-
sented above is useful to put into light the mechanism
leading to the bistability phenomenon, but it cannot ac-
count for the exact interaction of the PB with the trapped
atoms. A detailed comparison with the experimental data
is thus not useful. In the next section, we present a more
complete model of this interaction, considering the partic-
ular case of the up-down transition of the cycle. We will
show that the confrontation of the calculations with the
experimental measurements of the value of the I↓ transi-
tion point as a function of the detuning of the PB allows
us to deduce the trap capture velocity along the PB.
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4 Study of the interaction of the perturbing
beam with the trapped atoms

The simple model we developed in the previous section
brings us interesting information about the physical pro-
cess underlying the bistability. In particular, the model
suggests that the transitions observed in the bistability cy-
cle correspond to threshold values of the losses induced by
the perturbing beam. This idea is explored in the present
section in order to construct a numerical model allowing
us to calculate the transition intensity as a function of the
detuning of the PB.

The interaction of the perturbing beam with the
trapped atoms is a complex process. A cold atom inside
the PB absorbs photons preferentially in this beam, be-
cause of its high intensity, and is thus accelerated. If it
absorbs enough photons it is finally ejected from the trap.
As a typical figure it should absorb thousands of pho-
tons before escaping the trap. Meanwhile, the atoms are
moving and, as the high-intensity region inside the PB is
spatially small, there is a chance for an atom to exit this
region before escaping. However, as long as an atom stays
inside the PB, its dynamics is dominated by this beam. We
can thus simply modelize the trap effect in the direction
of the PB as a square-well potential of depth U = Mv2

c/2,
where vc is the capture velocity of MOT in the direction of
the PB. The trapped atom evolves under the interaction
with the PB and can eventually escape from the trap if its
kinetic energy becomes larger than U . A numerical “clas-
sical Monte-Carlo” method simulates the motion of the
atom inside the PB, and the comparison of the numerical
simulation with experimental data allows us to deduce the
trap capture velocity along the PB.

The capture velocity vc of a magneto-optical trap is
an important parameter. From simple arguments, one can
deduce that the feeding rate R of the trap scales as (vc/v)4

where v is the mean velocity of the hot atoms feeding the
trap [6]. However, due to the anisotropy of the trap, one
easily understands that this velocity depends also on the
direction of the motion of an atom entering the trapping
region: if it is almost parallel to one of the trapping beams,
it has greater chances of being captured than if its motion
is parallel to the bisector of the trapping beams.

Our calculation is based in the following assumptions:

1. As mentioned above, the trap is modelized as a square-
well potential, and thus described by a unique param-
eter, the capture velocity along the PB. An atom re-
mains trapped as long as its velocity v is less than the
capture velocity, otherwise it escapes from the trap.
The capture velocity along the PB, vc(θ), is the first
parameter of the model.

2. Inside the region where the PB is intense, the rate of
absorption of photons from the trap beams is neglige-
able as compared to the rate of absorption of photons
from the PB.

3. As suggested by the model presented in the preceding
section, we assume that the system shifts from its high-
population state to its low-population state if the loss
rate induced by the perturbing beam becomes greater

than a threshold value b↓. Using equation (2), one sees
that the transition condition bP > b↓ corresponds to
N < N↓, with

N↓ =
R

b0 + b↓
'
R

b0

(
1−

b↓

b0

)
= N0

(
1−

b↓

b0

)
· (20)

Let us introduce an easily accessible parameter, the de-
pletion of the trap population, given by:

D ≡ 1−
N

N0
·

The transition condition thus reads

D > D↓ =
b↓

b0 + b↓
·

that will be the second parameter in our model.
In order to calculate the depletion of the trap, and

so the transition intensity I↓, we performed a classical
Monte-Carlo calculation. In this calculation we do not take
into account the hyperfine structure of the Cesium, but we
modelize it as a J = 0 → J = 1 (that allows us to take
into account the magneto-optical trapping effect), with a
dipole matrix element equal to the mean value for cesium.
This is one of the limitations of the model. We take into
account the motion along the PB (x′ direction, see Fig. 1)
and the transverse motion with respect to this beam (y′

direction). We suppose that there is a perfect symmetry
in the plane orthogonal to the direction of propagation
of the PB. This is justified by the high intensity of the
PB, that dominates the dynamics of the atoms inside it.
The fact, verified by the numerical simulation, that the
typical number of fluorescence cycles necessary to expel
an atom from the trap is a few thousands2, implies that
the global effect of the spontaneous emitted photon on the
atomic motion averages to zero3 and can be neglected in
our calculation. Our model takes into account the light-
shift due to the PB intensity and the effect of the intensity-
gradient (dipole) force on the motion of the atom. We let
the atom evolve along the PB until one of the following
conditions is fulfilled:

a) If the velocity of the atom becomes greater than the
capture velocity the atom is expelled from the trap.

b) If the transverse motion of the atom takes it outside
the PB, the atom remains trapped. In order to pre-
cisely decide when the atom exits the PB, we calculate

2 This can also be seen by an order of magnitude argument.
The change in the atomic velocity corresponding to the ab-
sorption of a photon is 3.5 mm/s. The capture velocity, as we
find below, is of order of tenths of meter per second. Thus the
number of absorptions needed to accelerate an atom from rest
to the velocity of capture is roughly ten thousand.

3 In fact, we performed a limited number of simulations in
which the full degrees of freedom of the atomic motion were
taken into account. It is a time-consuming calculation, and the
results obtained were in good agreement with the simplified
model described above.
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the photon absorption transition rate given by equa-
tion (4), whose maximum value is Smax = Γ/2. We
consider that the atom is outside the PB at the po-
sition x if S(x) < ηSmax, for a given threshold value
η. We numerically verified that the results are not af-
fected if η is decreased. In our calculations we used
η = 0.01.

For each value of the angle θ, we have a set of experi-
mental data (see Fig. 6) Iexp↓ (∆i

P ) for different values ∆i
P

of the detuning of the PB. We use the numerical model
to calculate these values. The calculation proceeds as fol-
lows. For fixed values of vc, IP ,∆i

P , we start from a sample
of atoms (2.5 × 104) chosen in order to satisfy the spa-
tial and velocity distributions corresponding to the atomic
cloud features. We let the system evolve and we calculate
the value of the cloud depletion D(vc, IP , ∆i

P ). We choose
a threshold value for the depletion corresponding to the
up-low transition, D↓, and we adjust the PB intensity to
a value Ii↓ such that D(vc, I

i
↓, ∆

i
P ) = D↓. We repeat the

procedure for all values of the PB detuning correspond-
ing to the set of experimental data, which produces a set
of theoretical values Ith↓ (vc, D↓,∆

i
P ). The error function

ε(vc, D↓) =
∑
i

∣∣∣Ith↓ (vc, D↓,∆
i
P )− Iexp↓ (∆i

P )
∣∣∣ is then min-

imized by adjusting vc and D↓. This is gives us the best
(two-parameter) fit to the experimental data correspond-
ing to the full line in Figure 6. The comparison with the
experimental data shows a reasonable agreement.

The value obtained for D↓ = 0.25± 0.02 is the same
for the two sets of data, which confirms that the con-
dition for the transition is a threshold depletion of the
trap by the PB, in agreement with the prediction of the
model discussed in the previous section, equation (19):
b↓/b0 = 0.3 =⇒ D↓ = 0.23. This result is physically ev-
ident if one remarks that the transition occurs when the
displacement of the cloud with respect to the center of
the trap (and thus with the center of the PB) becomes
small enough, which corresponds to a threshold value for
the optical thickness of the cloud. On the other hand, as
expected, the value for the capture velocity we obtained
strongly depends on the value of the angle θ that the PB
makes with the arms of the trap: vc(23◦) = 49 ± 3 m/s
and vc(35◦) = 12 ± 2 m/s. The uncertainties are almost
equally due to the experimental uncertainty and to the
numerical simulation. The obtained values show that the
magneto-optical trap is more efficient in slowing and cap-
turing atoms that enters it along one of its arms than in
trapping atoms that enters it along a bisector.

Measurements of the mean value of the capture veloc-
ity have been reported in the literature in a variety of sit-
uations and for a large range of parameters. The reported
values range from 35 m/s [7] to 11 m/s [8].

Unfortunately, the geometry of our MOT prevents
us from making measurements for very small angles or
for angles very close to the bisector, which would be
very interesting in order to give us an idea of the functional

dependence of the capture velocity on the angle θ. Never-
theless, the results presented above show that the study
of the bistability cycles obtained with the experimental
scheme described in this paper is a powerful method to
study the capture properties of the MOT.

5 Conclusion

The bistability phenomenon presented above originates
from the non-linearity due to the coupling between the
displacement produced by the shadow effect and the pop-
ulation of the magneto-optical trap. This effect is related
to the usual MOT configuration, namely three orthogo-
nal arms formed each one by a retro-reflected laser beam.
This configuration is by far the most common one; yet
its dynamical properties have been astonishingly seldom
studied in detail. The results presented here are intended
to be a step in the comprehension of the complex dynam-
ics of the MOT atomic cloud, allowing the study of its
basic mechanism: the ability for capturing and trapping
atoms.
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